Stability of equilibrium points:
Consider a dynamical system described by

different behaviors:

 $\dot{X} = F(X)$. Let X^e be an equilibrium pt. Then, starting from $X(0) = X^e$, the system will stay at X^e forever. However, if you perturb the system from X^e , it can have

'D The system goes back to Xe from all possible "small" perturbations.

(T) The system moves away from Xe f

In the system moves away from Xe for some "small" perturbation.

"The system remains "close" to xt for all "small" perturbations, but may not tend toward Xe asymptotically.

Agunda: 1 Study stability of the origin of a linear dynamical system of the forw X = AX. ② Study stability of an eq. pt. X^c of a general dynamical system $\dot{X} = F(X)$ through linearization of F around X^c . Stability of origin of $\dot{X} = AX$. · To motivate the study, consider a scalar dynamical system of the form x = ax. Then, the origin (x=0) is an equilibrium pt. Case I: a >0. Then, if you perturb the system to E>0, you have z=ae>0, i.e., a possitive velocity. As a result, the system will find to move away from x=0.

Convince yourself that if you started from 26) = E < 0, the system will again move away from x=0. Therefore, x=0 is unstable. Case I: a < 0. If you start from x(0) = E > 0, then $\dot{x}(0) = a \mathcal{E} < 0$, i.e., if will have a negative velocity, and the eystem will move towards the origin. Convince yourself that the system will tend to the origin, even if you started at $x(0) = \varepsilon < 0$. Therefore, x = 0

Takemay from this example: Stability of the origin for a scalar dynamical system $\dot{x} = ax$ only depends on the sign of a. $a > 0 \Rightarrow unstable$. $a < 0 \Rightarrow stable$.

is stable.

· For general linear time-invariant systems X = AX, the stability of the origin is determined as follows: Let $\lambda_1, ..., \lambda_n$ be the complex eigenvalues of A & R". Thew, (1) if Re{\(\lambda\)i} < 0 for all i=1,..., n, then table. the origin is D if Re {λi} >0 for any i=1,..., n, then the origin is unstable. 1 if Re $\{\lambda i\} \leq 0$ for all i=1,...,n, and Re $\{\lambda_i\} = 0$ for some i = 1,...,n, then the origin is marginally stable. Here, Re ?. I denotes the real part of the complex number. Remark: For linear dynamical systems, we often refer to the "system" being stable or not, rather than the origin.

Example: Consider a 2^{nd} -order dynamical system X = AX, where $A = \begin{pmatrix} 7 & -1 \\ -2 & 1 \end{pmatrix}$. State whether the system is stable, unstable, or marginally stable.

· Calculating eigenvalues of A: Solve for $\lambda'_{,8}$ that satisfy def(A- λ I) = 0.

$$\det \left(A - \lambda \Gamma \right) = \det \left(\frac{7 - \lambda}{-2} - \frac{1}{1 - \lambda} \right)$$
$$= \left(7 - \lambda \right) \left(1 - \lambda \right) - \left(-2 \right) \left(-1 \right)$$

$$= 7 - \lambda - 7\lambda + \lambda^2 - 2$$
$$= \lambda^2 - 8\lambda + 5$$

Solving x-8x+5=0, we get, $x = \frac{8 \pm \sqrt{64-20}}{2} = 4 \pm \sqrt{11}$.

 $4 + \sqrt{11} > 0 \Rightarrow$ the system is unstable.

Example: Consider a dynamical system described
by
$$\ddot{z} + 2\ddot{z} \dot{z} + \omega^2 z = 0$$
, where $\ddot{z} > 0$ and

wo are constants. State when the system is stable, unstable, or marginally stable.

· Convert ODE description to State-space form: Let $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, where $x_1 = x$, $x_2 = \dot{x}$.

Then, $\dot{X} = \begin{pmatrix} \dot{x} \\ \dot{x} \end{pmatrix}$ $= \begin{pmatrix} \dot{x} \\ -2\xi \dot{x} - \omega_0^2 x \end{pmatrix}$ $= \begin{pmatrix} \dot{x}_2 \\ -2\xi \dot{x}_2 - \omega_0^2 x_1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ -\omega_1^2 & -2\xi \end{pmatrix} \chi$

$$=\begin{pmatrix}0&1\\-\omega^{2}&-2\xi\end{pmatrix}$$

$$:=A$$

· Compute eigenvalues of A: $\det(A-AI) = \det(-\lambda)$

$$\det \left(A - A I \right) = \det \begin{pmatrix} -\lambda & 1 \\ -\omega_0^2 & -2\xi - \lambda \end{pmatrix}$$
$$= \left(-\lambda \right) \left(-2\xi - \lambda \right) - 1 \left(-\omega_0^2 \right)$$

 $= \lambda^{2} + 23\lambda + \omega^{2}.$ Setting det $(A-\lambda^{2}) = 0$, we get, $\lambda = -23 \pm \sqrt{43^{2} - 4\omega^{2}}$

$$= -\frac{3}{5} \pm \sqrt{\frac{5^2 - \omega_0^2}{5^2 - \omega_0^2}}$$

Case 1: $W_0 \neq 0$. Then, three cases can arise:

•
$$\xi^{2} - \omega^{2} > 0$$

 $\xi^{2} - \omega^{2} < \xi^{2} \Rightarrow -\xi + \sqrt{\xi^{2} - \omega^{2}} < 0$.
Also, $-\xi - \sqrt{\xi^{2} - \omega^{2}} < 0 \Rightarrow \text{ system is Stable}$.

• $\xi^2 - w_0^2 = 0$ $\lambda = -\xi, -\xi \Rightarrow \text{ system is Stable}.$ · 32-w, < 0

=> system is stable.

Case 2:
$$\omega_0 = 0$$
. Then, $\lambda = -2z_0$, 0. \Rightarrow System is marginally stable.

Stability of eq. pt. of a possibly non-linear dynamical system Xe.

So far, we have studied the stability of the origin of a linear dynamical system of the form $\dot{X} = AX$. Now, let's study the stability of an eq. pt. X^e of a possibly non-linear system $\dot{X} = F(X)$.

Steps involved:

- · Linearize F around Xe.
- · Study the stability of the linearized system.
- · Infer about stability of eq. pt. using Lyapunou's theorem.

· Linearizing Faround Xe: Since X^e is an eq. pf., $F(X^e) = 0$. Define $Y = X - X^e$. Then, y = X = F(x) $= E(X_6 + \lambda)$ = $\nabla F(x^e). \gamma$

for y close to 0, where $\nabla F(x^e)$ is the Jaeobian of F evaluated at x^e . The local "linearized" dynamical system around x^e is given by $\dot{y} = \nabla F(x^e). \ \dot{y} = A. \dot{y}.$

Calculating
$$\nabla F(x^e)$$
: If $X = \begin{pmatrix} x_1 \\ x_n \end{pmatrix} \in \mathbb{R}^n$, then express $F(x)$ as

Calculating
$$\nabla F(x^e)$$
: If $X = \begin{pmatrix} z_1 \\ z_n \end{pmatrix} \in \mathbb{R}^n$, then express $F(x)$ as
$$F(x) = \begin{pmatrix} f_1(x_1, ..., x_n) \\ f_n(x_1, ..., x_n) \end{pmatrix}.$$

$$\Rightarrow \nabla F(X) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial f_n} & \frac{\partial f_n}{\partial f_n} & \cdots & \frac{\partial f_n}{\partial f_n} \end{pmatrix}$$

Get $\nabla F(x^e)$ by evaluating the derivatives at x^e .

Get
$$\nabla F(x^e)$$
 by evaluating the derivatives at X'
Example: Let $X = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$, $X = \begin{pmatrix} -\chi_1 + \chi_2^2 \\ \chi_1 - 1 \end{pmatrix}$.
 $X^e = \begin{pmatrix} \chi_1^e \\ \chi_2^e \end{pmatrix}$ satisfies $-\chi_1^e + (\chi_1^e)^2 = 0$, $\chi_1^e = 1$.

 $\Rightarrow \chi^e = \begin{pmatrix} 1 \\ 1 \end{pmatrix} , \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\Rightarrow \nabla F(X) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$
Get $\nabla F(X^e)$ by evaluating the derivatives at X^e

$$Frample: \quad |A| + |X| = |X| + |X| +$$

$$F(x) = \begin{pmatrix} -x_1 + x_2^2 \\ x_1 - 1 \end{pmatrix}$$

$$\Rightarrow \nabla F(X) = \begin{pmatrix} \frac{\partial}{\partial x_1} (-x_1 + x_2^2) & \frac{\partial}{\partial x_2} (-x_1 + x_2^2) \\ \frac{\partial}{\partial x_1} (x_1 - 1) & \frac{\partial}{\partial x_2} (x_1 - 1) \end{pmatrix}$$

$$= \begin{pmatrix} -1 & +2x_2 \\ 1 & 0 \end{pmatrix}.$$

dinearized system around
$$X^e = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
:
 $Y = \nabla F(1) \cdot Y = \begin{pmatrix} -1 & 2 \\ 1 & 6 \end{pmatrix} \cdot Y$
Linearized system around $X^e = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$:

Sinearized system around
$$X^{e} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
:
 $\dot{Y} = \nabla F \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \dot{Y} = \begin{pmatrix} -1 & -2 \\ 1 & 0 \end{pmatrix} \cdot \dot{Y}$.

· Study the stability of the linearized systems around earth eq. pf:

Steps: Utilize the recipe for analyzing Stability of the linearized system Y= \(\forall F(xe)\). Y by computing the eigenvalues of $\nabla F(x^e)$.

Back to our example:

Duck to our example.

I dinearized system around
$$X^e = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
: $Y = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$

Lef $(A - \lambda T) = (-1 - \lambda)(-\lambda) - 2 \cdot 1$
 $= \lambda^2 + \lambda - 2$

Setting if to zero, we get $\lambda = -1 \pm \sqrt{1+8}$

 $=\frac{-1\pm 3}{2}=1,-2.$ One of the eigenvalues is the => The linearized system around (;) is unstable.

Linearized system around
$$X^{e} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
: $\dot{Y} = \begin{pmatrix} -1 & -2 \\ 1 & 0 \end{pmatrix}$. $\dot{Y} = \begin{pmatrix} -1 & -2 \\ 1 & 0 \end{pmatrix}$.

$$\det (A - \lambda I) = (-1 - \lambda)(-\lambda) - 1(-2)$$
$$= \lambda^2 + \lambda + 2$$

Eigenvalues are given by
$$\lambda = -1 \pm \sqrt{1-8}$$

= $-1 \pm \sqrt{7}$

$$\Rightarrow \operatorname{Re}\{\lambda\} = -\frac{1}{2}, -\frac{1}{2} < 0$$

the eq. pts of the non-linear system $\dot{x} = F(x)$ using Zyapunov's theorem.

Lyapunov's fluorem: Consider a dynamical system $\dot{X} = F(x)$, and let \dot{X}^e be an equilibrium point. Then:

If the linearized system around x^e is stable, then x^e is asymptotically stable for the system $\dot{x} = F(x)$.

• If the linearized system around X^e is unstable, then X^e is unstable for the system $\dot{X} = F(X)$.

Kemark 1: Asymptotically stable means that $X(t) \rightarrow X^e$, if X(0) is "close enough" to X^e . Remark 2: If the linearized system is marginally stable, from Notting can be deduced about the stability of the eq. pt. of $\hat{X} = F(X)$.

Back to our example :

Recall that our example system was given by $X = \begin{pmatrix} -2_1 + 2_2^2 \\ 2_1 - 1 \end{pmatrix}$, where $X = \begin{pmatrix} 2_1 \\ 2_2 \end{pmatrix}$.

 $X' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. " diversized system around (!) is $\dot{y} = \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$.

that is unstable. " dinearized system around $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is $y = \begin{pmatrix} -1 & -2 \\ 1 & 0 \end{pmatrix}$. is stable. From Lyapunov's sheorem, we get $x^e = \binom{1}{i}$ is unstable, meaning a "small" perturbation from (1) can make X(t) diverge

from (!). · Xe = (1) is asymptotically stable, meaning after any "small" perturbation from (-1), X(t) will approach (-1) as t > 0.